

Prepared by Cem KARACA, cannot be copied, or used without prior permission of
author.

INTRODUCTION

To improve network performance, multi queuing systems are started to use and the queues
must be organized in a way that all the queues should be fairly used. By this approach
scheduling algorithms are developed. In this research Random and other three fair queuing
systems Round Robin, Shortest Queue, periodically are implemented and their respective
simulation results are gathered. In order to gather information a packet source and for queues
and four servers are developed and packet size and packet sending time intervals server
capacities and server packet sizes are made variables, by the way the simulation can be
implemented in all conditions such as some algorithms are more fair when servers are faster
and some queues are reliable in slow servers. As we all know after overflow in queues we
don’t have much to do to fix that situation, thus overflows must be prevented.

SIMULATION STRUCTURE

In this simulation a packet server with variable packet sending time and variable packet length
is used, also for the sake of real world type networks I also added Poisson packet sending
times and Poisson packet lengths. Queues are FIFO (First In First Out) type and fixed to max
80 packets buffer. Also queue packet sizes and capacities are made variable in order to make
simulation for all types of queues, such that if the servers operate faster than source then there
is no meaning to make simulation because all the packets coming from the source will be
directly routed to respective sinks and we never face a problem in order to make multiple
queues.

POISSON RANDOM VARIABLES

Queuing systems are random processes, this means we cannot predict at which time a packet
will arrive and the size of the packet is also a random variable in a boundary.
The matching random system to real world queuing systems is negative exponential random
numbers. The mathematical definition of negative exponential is:

0
0

0
)(

<
≥





=
−

x
xe

xf
xλλ

In this formula x denotes the uniform random numbers generated between 0-1 and ? is the
mean value, this means f(x) will give results near ?.
Such that for ?= { 5}:

x
NE exPxf λλλλ −==),(),(

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

time

P
ac

ke
t S

iz
e

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

P
ac

ke
t S

en
di

ng
 in

te
rv

al

Number of attempts

SCHEDULING ALGORITHMS

The primary objective of scheduling algorithms is to get messages transferred across network
from the source to destination in a correct, simple and optimal way. In some applications such
as video conferencing or streaming servers may require more than one buffer in order to
reduce hard disk fragmentation fatalities. By the way a scheduling algorithm must be simple
in order to make scheduling faster.

 Round Robin Scheduling

It is one of the oldest, simplest, and fairest and most widely used scheduling algorithms,
designed especially for time-sharing systems. A small unit of time, called time slices or
quantum is defined. All run able processes are kept in a circular queue. The packet scheduler
goes around this queue, allocating the packets to each queue for a time interval of one
quantum. New processes are added to the tail of the queue.

If the process is still running at the end of the quantum, the packet is preempted and the
process is added to the tail of the queue. If the process finishes before the end of the quantum,
the process itself releases the packet voluntarily.

Shortest Queue

Shortest queue is the fairest scheduling algorithm because the algorithm searches for the
shortest work remaining in the queues and puts the work to that queue. Especially shortest
queue algorithm is better when Poisson arrival time and Poisson packet sizes are used. Here is
the algorithm for shortest queue:

 if(q1<=q2 && q1<=q3 && q1<=q4) min =0;
 if(q2<=q1 && q2<=q3 && q2<=q4) min =1;
 if(q3<=q1 && q3<=q2 && q3<=q4) min =2;
 if(q4<=q1 && q4<=q2 && q4<=q3) min =3;

Random Queue

Random queue algorithm simply selects a queue randomly, this kind of algorithms may be
efficient on high load large queue servers in order to reduce calculation time.

Periodically Queuing

Periodically Queuing is similar to Round Robin but it uses minimum quanta or time division,
in Round Robin queues are switched by time but in periodically queuing instead of time
packets are switching the queues.

SIMULATION

Simulation is made using Visual C++ and in order to make simulation more flexible and
efficient multi-thread programming is used. Threads, sometimes called lightweight processes
are indepedendently scheduled parts of a single program. We say that a task is multithreaded
if it is composed of several independent sub processes which do work on common data, and if
each of those pieces could (at least in principle) run in parallel.
Threads allow a programmer to switch between lightweight processes when it is best for the
program. (The programmer has control.) A process which uses threads does not get more
CPU time than an ordinary process - but the CPU time it gets is used to do work on the
threads. It is possible to write a more efficient program by making use of threads.
Inside a heavyweight process, threads are scheduled on a FCFS basis, unless the program
decides to force certain threads to wait for other threads. If there is only one CPU, then only
one thread can be running at a time. Threads context switch without any need to involve the
kernel - the switching is performed by a user level library, so time is saved because the kernel
doesn't need to know about the threads.
In simulation there are six threads, one main thread which handles the window drawings and
system messages, one thread for the packet source, four threads for queues (independently)
and one thread for all sinks.

Statistics

Statistical data is taken from a dialog box as shown in the figure below:

The main purpose of this project is to gather data from different types of scheduling
algorithms by making a simulation. Simulation itself must be efficient in a way so the
simulation is making deal with time.

Conclusion

By the help of simulation I observe that some algorithms are better in some conditions, such
as random scheduling is the cheapest algorithm but we cannot guarantee the packets to be lost
or not, also random scheduling is ideal for large queued slow servers, Round Robin algorithm
is more flexible than others, that means, it can be adapted to all type of servers by configuring
the quanta amount, but requires stochastically gathered server legend in order to find suitable
quanta value. Shortest queue needs more calculation power because this algorithm makes
more comparisition than the others but very fair kind of algorithm. Especially gives better
results when Poisson packet sizes and arrival times are used. Periodically scheduling is a little
control less than the others, this algorithm simply selects next queue but when Poisson packet
sizes are used, after a while some queues works are getting larger and some queues sits idle.
In my opinion the best method is to use random scheduling when servers are in light work and
if work amount gets bigger the servers should switch to shortest queue algorithm, by this
method the cost will be less and the packet arrivals should be guaranteed.

Cem KARACA
cem.karaca@emu.edu.tr

