

Multi-Protocol Video on Demand System for Distance Education with Pedagogical Enhancements

Thesis Presentation

21/01/2004

Cem KARACA

Supervisor: Assoc. Prof. Dr. Derviş Z. DENİZ

Outline

- Distance Education
- Video on Demand (VoD) Systems
- Pedagogical Enhancements on VoD Systems
- Networking Technologies for VoD Systems
- Buffering
- The Interfaces
- Conclusions
- Questions

Distance Education (DE)

Synchronous Distance Education (SDE)

Asynchronous Distance Education (ADE)

Comparision of SDE and ADE

	SDE	ADE	
Orientation	Classroom	User or Group	
Scheduling	Required	1 Not required	
Presentation	Multicast	Unicast(peer to peer)	
Network Load	Continuous	When streaming	
Distribution	U AN	WAN and Internet	
Hardware	1 Any compatible	Mass storage	
Interaction	1 1		
Broadcast	Real-time Streaming		

The Problems

ASE Systems

- ASE System session quality is dependant on time and place.
- Sessions are non-repeatable

ADE Systems

- Current implementations are not interactive
- The DE content cannot be expandable by the learner
- Mostly web based and multimedia is only used where necessary

The Solution

Need for a Complete DE System

- Learner oriented,
- That will be accessed on demand over the WAN or the Internet,
- It will also include course content related knowledge base.
- It will allow learner interaction to the knowledge base.

The VoD System

Pedagogically Enhanced Video on Demand (VoD) System for ADE

- Streaming on demand video,
- UCR Capabilities,
- Applicable over the Internet
- The network and storage load could be distributed.

The VoD System Infrastructure

Servers

Mediation Server

- Authentication
- Storing important databases
- Mediates between client side applications and Content Servers

Content Servers

- Storing lecture videos
- Content materials and their bounded obects
- Serving VoD DE projects with the transport/application protocols such as TCP, FTP, UDP and RUDP.

System Architecture

Pedagogical Enhancements on VoD System

- VoD Player is the only required tool for viewing VoD Projects.
- VoD Player is a video based system application, that is able to view content related supporting materials as "html" pages.
- VoD Player allows the learners to make their own additions.
- VoD Project Editor is the only tool for creating VoD DE projects.
- VoD Project Editor supports "html" creation, edition and synchronization to course videos.

System Applications

	Client-Server Applications	Software Component	
Client Side	Student/Learner Client	VoD Player	
	Project Editor/Instructor	VoD Project Editor	
	Database and Content Admin	Web access to server resources	
Server Side	VoD Mediation Server	User and password database, Video Project database, Content server IP database.	
	VoD Content Server	TCP, UDP, RUDP and FTP Servers, Video Library, Supporting materials.	

The VoD Player

The VoD Player Plus

Content Synchronization

- 1) Learner additions
- 3) Video Slider

- 2) Standard content material
- 4) Buffer progress
- 5) Content addition window for the use of learners

The VoD Project Editor

- 1.) Video Preview Screen
- 2.) Project tree
- 3.) Content addition ruler
- 4.) "html" editing screen

Distributed Server Architecture for VoD System

OSI and VoD

Supported Protocols for Video Streaming

- Transport Control Protocol (TCP)
- User Datagram Protocol (UDP)
- File Transfer Protocol (FTP)
- Reliable User Datagram Protocol (R-UDP)

* In ideal cases

Reliable UDP

- Connection Oriented
- Error control with 32 bit CRC
- Packet Recovery

- Less overhead
- Fast
- Designed for video transportation

0	8	1 6	3 1	
Source Port		Destination Port		
UDP Length		Checksum		
Size				
32 bit CRC				
Packet Number				
Bulk data 65467 bytes				

System Performance Measurments

Results

Smooth Buffering

$$t_{W} = \begin{cases} 0 & : Sp < S_{D} \\ \frac{t_{P} * S_{P}}{S_{D}} - t_{P} : S_{P} > S_{D} \end{cases} \Leftrightarrow S_{D} > 0$$

Conclusions

- A complete ADE system could be implemented
- Pedagogical aspects are developed for VoD systems
- A new streaming protocol R-UDP is developed for low bit error rate networks
- Comparisions of the transport/application protocols are made
- Smooth buffering is developed